Kernel ellipsoidal trimming

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel ellipsoidal trimming

Ellipsoid estimation is important in many practical areas such as control, system identification, visual/audio tracking, experimental design, data mining, robust statistics and statistical outlier or novelty detection. A new method, called Kernel Minimum Volume Covering Ellipsoid (KMVCE) estimation, that finds an ellipsoid in a kernel-defined feature space is presented. Although the method is v...

متن کامل

UNIVERSITY OF SOUTHAMPTON Kernel Ellipsoidal Trimming T 8 . 11 . 10 - 01 /

Ellipsoid estimation is an issue of primary importance in many practical areas such as control, system identification, visual/audio tracking, experimental design, data mining, robust statistics and novelty/outlier detection. This paper presents a new method of kernel information matrix ellipsoid estimation (KIMEE) that finds an ellipsoid in a kernel defined feature space based on a centered inf...

متن کامل

Ellipsoidal Kernel Machines

A novel technique is proposed for improving the standard Vapnik-Chervonenkis (VC) dimension estimate for the Support Vector Machine (SVM) framework. The improved VC estimates are based on geometric arguments. By considering bounding ellipsoids instead of the usual bounding hyperspheres and assuming gap-tolerant classifiers, a linear classifier with a given margin is shown to shatter fewer point...

متن کامل

Trimming

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...

متن کامل

KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions

In a fuzzy classifier with ellipsoidal regions, a fuzzy rule, which is based on the Mahalanobis distance, is defined for each class. Then the fuzzy rules are tuned so that the recognition rate of the training data is maximized. In most cases, one fuzzy rule per one class is enough to obtain high generalization ability. But in some cases, we need to partition the class data to define more than o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2007

ISSN: 0167-9473

DOI: 10.1016/j.csda.2007.03.020